一、 有关“解决问题”教学中的问题。
1.“解决问题”教学目标如何把握?
实验教材中没有了以往教材中“应用题”的编排,而安排了若干“解决问题”的单元,很多老师对如何把握这部分的教学要求,以及它和以前的“应用题”教学有何区别等存在疑惑,所以在这里首先说明一下。
从实质上说,“解决问题”教学的目标与“应用题”教学是相同的,都是让学生学会应用所学的数学知识解决简单的实际问题。但是,在编排上“解决问题”教学与原“应用题”有着很大的不同。以前的“应用题”是独立于其他知识单独编排的,与其他知识的结合不够紧密,另外,教师们通过长期的实践,在“应用题”教学中积累了丰富的经验,对应用题的解题方法形成了固定的格式,这对于学生掌握解题技巧确实很有帮助。但是当学生掌握了这种解题模式,就不去分析数量关系了,使得解应用题变成了机械的训练,也就失去了“应用题”教学培养学生思维能力、应用意识等的作用。
实验教材中,“解决问题”的编排是融于其他知识中的,在学生掌握了相关的数学知识后,给学生创设现实的具体情境,让学生运用这些知识来解决一些相应的实际问题。比如第一单元和第四单元,就是结合计算知识教学应用这些知识解决相应的实际问题;又如在空间与图形的有关单元,教学利用这些知识解决相应的实际问题;等等。这样就使解决问题教学和各部分数学知识的教学有机的结合在一起,同时从现实情境中提出问题还可以让学生体会数学在实际生活中的应用。
“解决问题”的教学目标是培养学生提出问题、分析问题、解决问题的能力,体会数学知识在解决实际问题中的作用。这里让学生学会分析数量关系,明确解题方法是不变的初衷。
2.如何引导学生学习解决问题的方法和思路?
有些老师提出在教学用两步计算的方法解决问题时,很多学生往往只解决一步就结束了。
要解决这个问题,首先要让学生学会看图,明确题意。因为现在的实际问题大都用图示来呈现,要让学生能从图中找出有用的信息,为解决问题做好准备。接下来,引导学生学会分析数量关系。因为本单元解决的是两步运算的实际问题,在引入时,老师可以从一步过渡到两步。比如教学例1时,老师可以先从一步计算的实际问题引入,创设这样的情境:原来看木偶戏的有22人,现在走了6人。让学生根据这些信息自己提出问题:现在看戏的还有多少人?然后自己解决。接下来,老师再出示又有13人来看戏,再让学生提出问题:现在一共有多少人看戏?学生有了前面的铺垫,知道用剩下的人加上新来的人数就可以了,也就是16+13=29人。在此基础上,老师再把中间的过渡问题去掉,让学生直接解决:原来看木偶戏的有22人,现在走了6人,又有13人来看戏。现在一共有多少人看戏?在学生交流分析思路时,老师要强调为什么用两步,在学生汇报用两步计算解决问题的时候,老师要问一问每一步解决的是什么,帮助学生理清思路,培养学生学会分析问题,找到解决问题的方法。
3.书写格式的要求。
教材在用两步计算解决问题的时候,出现了分步计算和列综合算式的两种形式,而且在连减中的不同方法中认识了小括号,在第四单元“表内除法(二)”的解决问题中出现了用递等式的书写形式计算综合算式。老师也就自然想知道:学生在解决实际问题的时候是不是要求必须列综合算式和使用小括号呢?综合算式是否一定要用脱式计算?还有要不要写答语等。
解决问题教学的重点是培养学生分析数量关系,找出解决实际问题的方法。至于是用分步列式还是列综合算式,只是书写形式的不同,对解决问题的要求没有影响。教材在这里介绍了综合算式和小括号,是让学生知道两步计算也可以用综合算式表示,同时也是初步渗透四则运算的计算顺序。在实际教学中,如果学生没有出现列综合算式解决的,老师可以加以引导和介绍,但对列综合算式或有小括号的综合算式解决问题不作统一要求。另外,教材中缺少四则运算的练习,为了后续的学习,老师可以适当增加一些这部分的单项练习,让学生通过练习掌握四则运算的计算顺序并初步体会小括号的作用。
关于写答语,在本册教材不作要求,学生可以口答完成。到了四年级,会作具体的要求。至于用递等式的脱式计算,教材在这里也只是介绍了这种写法,对学生也不做统一要求,在后面的学习中还会正式教学。
二、是否要求学生看除法算式说意义。
有老师问:要不要求学生看除法算式说意义,比如:18÷6=3 表示18里面有3个6还是6个3?
对于这个问题,我们认为对于单独的除法算式,一般不要讨论它的意义,除法的意义最好结合具体的情景来理解。对于除法的意义,要建立在平均分的基础上,让学生通过操作体会除法的意义。
|